If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x=441
We move all terms to the left:
x^2+8x-(441)=0
a = 1; b = 8; c = -441;
Δ = b2-4ac
Δ = 82-4·1·(-441)
Δ = 1828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1828}=\sqrt{4*457}=\sqrt{4}*\sqrt{457}=2\sqrt{457}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{457}}{2*1}=\frac{-8-2\sqrt{457}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{457}}{2*1}=\frac{-8+2\sqrt{457}}{2} $
| 3d-6=5d+46 | | 11z-3z=48 | | x+6+x+6=5x-9 | | -2=g- | | 6x+4=16.17 | | k/3+2=5/3 | | 36-6x=16+4x | | (-4x^2)+12x-1.4375=0 | | 5(7z-5=185) | | 5/3x=70 | | 9n+10n=21 | | 6x+4=2.15 | | 7.5÷g=1.5 | | (7+4p)=29+5p | | 27.75n=144.24 | | 5x+-1x=-2 | | 4/5h+9.2=81/2 | | 4w−25=43 | | 6x-2=3+3x | | 3x+7=-19-x | | 3237208371837128373872173871289371987128372380721083737012387n+12847472984612794612479612976497647164=5 | | y/2+1/9=2 | | 2x^2-1x=190 | | 3x+7=-9-X | | 6-4m=-22 | | 121k^2-390k+81=0 | | 5x+1x=-2 | | -2(4y-3)+3y=7(y+2) | | 4x-2(-5x+4)=64 | | 1=2/3(y-1)-1/5(2y-3) | | 4x-7=-25+x | | -2x^2+24x^2-64x=0 |